AEROSPACE DATA EXCHANGE PROGRAM TRANSMITTAL

PROBLEM ADVISORY

CAES

1. TITLE

UT699 LEON 3FT, GRFPU FLOATING POINT
CONTROLLER STORE FORWARDING ERROR

2. DOCUMENT NUMBER

SPO-2014-PA-0004

3. DATE (Year, Month, Date)
2014, May, 28

4. MANUFACTURER NAME AND ADDRESS

CAES

4350 CENTENNIAL BOULEVARD

COLORADO SPRINGS, COLORADO 80907-3486

Gwen Butler

5. MANUFACTURER POINT OF CONTACT NAME

(719) 594-8466

6. MANUFACTURER POINT OF CONTACT TELEPHONE

Gwen.Butler@cobhamaes.com

7. MANUFACTURER POINT OF CONTACT EMAIL

8. CAGE CODE 9. LDC START 10. LDC END 11. PRODUCT IDENTIFICATION CODE 12. BASE PART
65342 All All WGO07A UT699
13. BLANK 14. SMD NUMBER 15. DEVICE TYPE DESIGNATOR
5962-08228 01 & 02
16. RHA LEVELS 17. QML LEVEL
R&F Q&vV
18. NON QML LEVEL 19. BLANK
Proto & HiRel

20. PROBLEM DESCRIPTION / DISCUSSION / EFFECT

point unit is enabled.

A bug within GRLIB IP (rev. 1.0.22-b3680 and previous) residing in the UT699 (5962-08228) microprocessor
causes a store forwarding error under certain specific conditions when the GRFPU high performance floating-

The error occurs when the program running on the microprocessor executes instructions that complete both of two
patterns simultaneously. The appended erratum describes the two patterns in detail. Under this circumstance, the
GRFPC floating-point controller can store out incorrect data leading to software error.

21. ACTION TAKEN / PLANNED

appended to this Product Advisory)
2.

484 ceramic land grid array package, and

Add a compiler switch to ensure patterns never appear in compiler output.
(Complete - Reference Errata Workarounds in section 5.0 of the appended errata.)

column grid array package.

1. Created an errata to describe the workaround and mitigation methods to handle the error.
(Complete - UT699 LEON 3FT GRFPU Floating-Paint Controller (GRFPC) Erratum —

The bug will be corrected in the next LEON3FT (Generic P.N. UT699E) that is currently under
development at CAES. Prototypes are currently available and the device is only offered in the

22. DISPOSITIONARY RECOMMENDATION: | cpeck g [CONTACT O |removee 0O corRrRECTE X
USE AS IS MANUFACTURER REPLACE USE AS SPECIFIED
23. ADEPT REPRESENTATIVE 24, SIGNATURE 25 DATE
Timothy L. Meade R May 28, 2014
T Ci‘;%/[;zfﬂ_a_é,_.
— =
ADEPT PA FORM REVISON DATE: 2/15/2013 REVISION: A

CAES Product Errata UT699-ER-002

UT699 LEON 3FT GRFPU Floating-point controller (GRFPC) erratum: Store
forwarding error after single-precision loads to adjacent registers

Table 1: Cross Reference of Applicable Products

) Manufacturer . Internal PIC*
Product Name: Part Number SMD # Device Type Number:
LEON3FT UT699 5962-08228 All WGO7A

*PIC: Product Identification Code

1.0 Overview

This document describes a design erratum in the GRFPC floating-point controller: the hardware that interfaces the
GRFPU floating-point unit with the LEON3FT processor. For complete details regarding the impact of the erratum,
which versions are affected, and possible workarounds see Appendix A.

2.0 Affected Products

This erratum applies to LEON3/LEON3FT-based devices using GRLIB revisions earlier than b3680, where the GRF-
PU high performance floating-point unit is enabled in the processor.

For further information on how to determine if your product is affected see section 2 in Appendix A.

3.0 Description

Under certain specific conditions preceding a single-precision floating-point store, the GRFPC can behave incorrectly,
causing the FPC to store out incorrect data. For a detailed description of the triggering conditions, see section 4 in Ap-
pendix A.

4.0 Implications

On systems where the erratum is applicable and not using any of the workarounds described in section 5 of Appendix
A of this document, the impact is that certain single-precision floating-point stores can store incorrect data, leading to
software error.

5.0 Workarounds
See section 5 of Appendix A.

6.0 Summary/Conclusion and Possible Corrective Action

An error in the GRFPC floating-point controller, when triggered by a special case, can cause the GRFPC to store out
incorrect data. Applying the workarounds in section 5 of Appendix A will avoid the problem, in most cases without
performance or size penalty.

Creation Date: 3/19/14 Page 1 of 7 Modification Date: 3/19/14

CAES Product Errata UT699-

ER-002

Appendix A

Doc. Mo.: GRFPC-STORE-ERRATA
Issue: 1 Rew.:]
- - Diate: 2004-03-07 Page: 1off

GRFPU Floating-point controller (GRFPC) errata: Store forwarding
error after single-precision loads to adjacent registers

1 OVERVIEW

This document describes a design errata in centain versions of the GRFPC fioating point comroller, which
the hardware used to inmerface the GRFPLU floating point unit with the LEON3 and LEON3FT
processors. The impact of the eror, which versions are affected, and possible workarounds are
described.

For further information, contact Aeroflex Gaisler support: support@gaisler.com

2 AFFECTED PRODUCTS

21 General

This errata applies to LEONZ/LEON3FT-basad devices made using GRLIB revisions earlier than revision
b35680, and where the GRFFPL high performance floating-point unit is enabled in the processor. There are
also additional limitations on which IF configurations are affected.

If the below description i= not clear enough to determine if you are affected by the emrata, comtact
Aeroflex Gaisler support.

2.2 Aeroflex components

Aeroflex components affected are:
+ UTE99

Aeroflex components NOT affected are:
= UTE99E - NOT affected, made from a newer revision of GRLIB
= UT7V00 - NOT affected, made from a newer revision of GRLIB
* GRT12 - NOT affected, made from a newer revision of GRLIB
= LEON3FT-RTAX - NOT affected, none of these configurations use the GRFPU
* LEON4-MN2X - NOT affected, made from a newer revision of GRLIB

& Aeroflex Gaisker AB.

Creation Date:

3/19/14 Page 2 of 7 Modification Date

: 3/19/14

CAES Product Errata UT699-ER-002

Doc. Mo.: GRFPC-STORE-ERRATA
Issue: 1 Rlew.: 6
Dare: 2004-03-07 Page: 2of 6

2.3 How to check if LEON3/LEON3FT design is affected

If you are licensing GRLIE for use in your own FPGA or ASIC design, you can check the following
conditions in the design's VHDL source to see if the ematum applies to your system:

1 Check the GRLIB revision. This can be seen in the file name of the downloaded release
package, in the directory name after unpacking the release, and in the file
libvigriib/stdibfversion.vhd in the release file tree (constant grib_build). If this is higher than 3680,
you are NOT affected by this emor. Otherwise, continue with the following step.

2. Check if you are using the GRFPU by looking at the value of the fpu generic passed into the
LEOM3/LEONIFT instantiation. If this has values 1-7 or 17-23, you may have the ermor. If the fpu
generic has values 0, 8-16, 24-31, you are NOT affected by this ermor.

3. If your design matches step 1 and 2 above, you may be affected by the bug depending on the
value of the tech generic and any custom changes done to the technology mapping layer. Please
contact Aeroflex Gaisler for more information

If source for the design is not available, you can instead find out this information from inside the design:

1. The build ID can be found at memory address Oxfffii0, in the top half word (bits 31:16). This is
alzo read out and reported by GRMOMN when connecting to the system (except when the device
ID matches a known device, in that case the device name is printed instead).

2. The LEON3:s %basrl7 register has an FPU field at bits 11:10 which are set to "01° if the GRFFPU
iz used in the system.

Instead of using the methods above, a small program can be used to checks if the system it is running on
is affected by this emrata. See section & for the full listing or contact Aercflex Gaisler Support for an
electronic copy.

3 IMPACT

On systerns where the ermrata is applicable and not using any of the workarounds described in this
document, the impact is that certain single-precision floating-point stores can store incomect data, leading
to software error.

With compiler workarounds enabled, existing source code can be recompiled unchanged to avoid the
emata.

Assembler code will need to be reviewed for tiggering code sequences and may then need minor
maodifications to avoid the emor. In the majority of cases this can be done without performance or size

penalty.

£ Aeroflew Gaisker AB.

Creation Date: 3/19/14 Page 3 of 7 Modification Date: 3/19/14

CAES Product Errata UT699-ER-002

Doc. Mo GRFPC-STORE-ERRATA
Issue: 1 Rew.: 6
Date: 2014-03-07 Page: Jof b

4 ERRATA DESCRIPTION

41 Cause

The error is caused by logic inside the GRFPC floating point controller designed to avoid simultaneous
read and write to the floating point register file. This logic can in a special case, described below, behave
incomecty causing incomect data to be stored out from the FPC.

4.2 Trigger sequence

The errata triggers only on single-precision floating point stores safisfying certain criteria. Stores not
satisfying these critera will be unaffected.

The errata depends on both the current instructions before the store that are in the execution pipeline,
and which last two floating-point operations (real operations that enter the FPU, not loads and stores)
that went into the pipeline before the store. This can be expressed as two different execution “patterns”
that must be satisfied at the same time in order for the bug to trigger. In order to avoid triggering the bug,
the code should be aranged so at least one of the two patterns is avoided.

Pattern 1:

1. single-precision load or single-precizion FPOP to register %fX, where X is the same register as
the store being checked

2. single-precision load or single-precision FPOP to register %fY , where Y is the opposite register
in the same double-precision pair.

3. 03 instructions of any kind, except stores from %X or %%fY or operations with %fX as
destination.
4. The store (from register %fX) being considered
Pattern 2:
1. double-precision FPOFP

2. Any number of operations on any kind, except no double-precision FPOP and at most one (less
than two) single-precision or single-to-double FPOPs

3. The store (from register %fX) being considered

For the purposes of this specific emata and the patterns above, the instructions are classed as follows:

single-precision load: Id to FF register
single-precision store: st from FP register
double-precision load: ldd to (even) FP register
double-precision store: std from {even) FF register

single-precision FPOP: fadds, fsubs, fmuls, fdivs, fsgrs, femps, fempes, fmovs, fnegs, fabss, fitos,
f=toi, fitod, fdtoi, fdtos

single-to-double FPOP: famuid, fstod, fitod

double-precision FPOP: faddd, fsubd, frnuld, fdivd, f=qrid, fempd, femped

& Aerofiex Gaisler AB.

Creation Date: 3/19/14 Page 4 of 7 Modification Date: 3/19/14

CAES Product Errata UT699-ER-002

Doc. Mo GRFPC-STORE-ERRATA
Issue: 1 Rew.: 6
Date: 2004-03-07 Page: 4of B

4.3 Examples

The following instruction sequence example will tigger the bug, note that the operations performed are
double precision;

1d [%18]. %fO

1d [%11], =fl

faddd %f4, %fe, xfe

faddd %f8, %f9, xfle

st xfe, [%1e]

The following instruction sequence will also trigger the bug:
faddd %f4, %fe, %f8
faddd %fg, %f9, %fle
1d [%1e], =fe
1d [%11], =fl
st %fo, [%10]

This sequence will NOT trigger the bug, because both the two previous Fpops are single-precision:
fadds %f4, %fe, xf8
fadds %f8, %f9, xfle
1d [%1e], =fe
1d [%11], =fl
st %fe, [%ie]

This sequence will also NOT trigger the bug, because double precision store is used

1d [%18], =fe
1d [%11], =fl
std %fa, [%12]

5 SOLUTIONS

51 Assembler-level workarounds

Either of these workarounds can be used to avoid the problem, only one of them needs to be used:

+ For potentially dangerous sequences, swap registers so the two adjacent loads are done to non-
neighbouring registers.

« Before an instruction sequence that might trigger this issue, or at the beginning of a function
doing only single-precision computation, insert two dummy single-precision FPOPs.

+ Keep the whole application in either double-precision or single-precision. Mote that for C
programs, using only single-precision is complicated by the fact that standard library routines
such as printf convert to double-precision intemally.

* When a dangerous sequence is found, insert NOPs between the loads and the store so the
number of instructions between are 4 or more.

& Aerofiex Gaisler AB.

Creation Date: 3/19/14 Page 5 of 7 Modification Date: 3/19/14

CAES Product Errata UT699-ER-002

Doc. Mo.: GRFPC-STORE-ERRATA
Issue: 1 Rew.:]
Diate: 2004-03-07 Page: S5of6

5.2 Compiler workarounds

The Aeroflex Gaisler provided GCC tool-chains, from wversions shown below, have integrated a
workaround for this bug into the existing -miune=wte99 switch.

BCC (bare-C): BCC release 1.0.45 and newer (both GCC 3.4.4 and 4.4.2 based toolchains)
RCC (RTEMS): RCC release 1.2.15 and newer
WxWorks: GCC-4.1.2 based toolchain release 1.0.12 and newer

53 Scan scripts
A scan script can be provided to search binary files for dangerous sequences. The script is written in TCL

and takes as input disassembly output from running objdump -d on the binary or on individual object files.
Contact Aeroflex Gaisler support to obtain a copy.

£ Aeroflex Gaisler AB.

Creation Date: 3/19/14 Page 6 of 7 Modification Date: 3/19/14

CAES Product Errata UT699-ER-002

Diae. Mo GRFPC-STORE-ERAATA
|ssue: 1 Rev.: <]
Dimpe: 20140307 Page: Gofb

& TEST PROGRAM

The following test program will check for the FPU emata and report if it is found. k should be compiled
with the BCC compiler and run with GRMOM.

#include <stdic.h=

gtatic inline int chkfpu({woid)
{

uneigned long tmp;
asm volatile (" mow %%ascl7, #0\n" @ "=rc"(tmp));

return ((tmp >> 10) & 3);

}

static inline int testfunc(woid)
{
uneigned long long buf[2];
uneigned long tmp;
buf[0] = 0x3££0000000000000LL:;
buf[l] = 0x1234567B00000000LL;
asm wvolatile (" 1dd [%1],%%fE'n"
" faddd ¥%£E,%%£6,%%£8\n"
" faddd ¥%£6,%%£6,%%£8\n"
" 1ld [%1+B],%%£2'n"
" 1d [%1+8],%:£3\n"
" =t BREZ,[EL1+E]\m"
" 1d [%1+#B], %0%n"
1 "=r"{tmp) « "r=(buf) « "£E€","£7","£2","£3","memory”):
return (tmp 1= 0x1234567E);
}

int main{int arge, char **argwv)
{ = =
int i;
if (chkfpu() == 0) {
puts({"Ho FPU in system - errata not applicable™);
return 0;

for (i=0; i<2; i++) {
if (testfunci)) {
puts | “Errata detectedl™);
return 1;
}
}

puts|"Errata not detectedl™);
return 0;

D Aerofey Gaisher &F.

Creation Date: 3/19/14 Page 7 of 7 Modification Date: 3/19/14

